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In the terminal step of respiration, cytochromexidase (€O)
carries out the 4ereduction of dioxygen to watérThis reaction

is coupled to the ATP synthesis, the main energy storage source in

the body. In healthy organismscO performs without releasing
toxic partially reduced oxygen specie$hree electrons involved
in the reduction originate from the fay/Cu active site. The fourth
electron and a proton come either from a tyrosine-244 (mixed
valence enzyme) or from FeA/CuA (fully reduced enzyme, with
proton translocation across the membrane) leading to an oxoferryl-
cupric-tyrosyl radical intermediate (ff or oxoferryl-cupric inter-
mediate (R), respectively?af We previously reported a stable'Fe
superoxide-Cu CcO mode?? that reacts intermolecularly with
exogeneous Tyr244 mimics leading to phenoxyl radicals and an
oxoferryl-cupric species, mimicking the,Rntermediate® On the
basis of the crystal structure of the enzyffaye have constructed
an FECu CcO modell (Figure 1) that faithfully reproduces the
structural hemes-Cug motif with a built-in histidine-tyrosine cross
link.52¢ The present study is designed to explore the validity of
the mixed-valence scenario by showing thahaving all the three
redox centers present in the enzyme active site, can first react with
O, to form oxy-1 that subsequently reacts intramolecularly to give
spectroscopic features that are associated with thietermediate
(specie, Scheme 1).

Oxygenation ofl at —60 C° leads tooxy-1, a stable species that
has the features of a Mesuperoxide-ClEb7a¢ This intermediate
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CcO Active Site
(left) Heme ag/Cug of bovine cytochromec oxidase; (right)

Figure 1.
chemical structure of.
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is EPR silent, and resonance Raman spectroscopy showed arFigure 2. (A) Evidence of an Fe(lll)-superoxo-Cu(l) specimg/-1 formed

oxygen isotope sensitive band at 575/549-&r{1%0,/180,) char-
acteristic of a heme-superoxidexf) species (Figure 2A¥.7ac
Moreover slight modification of the U¥vis spectrum is noticed
upon formation ofoxy-1.

Upon warming to—40 °C, the Fe-O, stretching mode decays
while intermediate speciesxy-l undergoes a subsequent intra-
molecular redox process similar to that which is thought to take
place in @O. In this process leading to spec2¢Scheme 1), the
distal Cu group becomes oxidized to an aquo or hydroxd' Cu
complex as the ©0 bond is heterolytically ruptured; the 'Fas
further oxidized to an Fé oxoferryl. In the same reaction sequence
the phenol is oxidized to a phenoxyl radical. During the process,
proton transfer is thought to occur leading to an hydroperoxo
intermediate postulated from DFT calculaticns.

First indication of the oxoferryl-cupric-phenoxyl radical nature
of 2 is given by spectrophotometric studiegith growing absorp-
tions at 586-620 nm as was shown incO for the R, state (610
nm) and the Fstate (575 nmj¢f Nanospray and electrospray mass
spectrometry analys&sndicate the formation o2 with a peak at
m/z= 1613.2871, matching the simulated spectrum of a potassium
chloride adduct of compour®i® An increase of 2 amu is observed
when1 is reacted with isotopi¢®O,. Evidence for the formation
of the oxoferryl nature oR was also established by an oxygen-
atom transfer reaction with triphenylphospHifeading in high yield
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by reaction ofl with dioxygen: resonance Raman (77 K, DMF) @fy-
1-180;, oxy-1-160,, and the difference spectrum. (B) X-band EPR spectrum
(77 K in DMF) obtained upon warming upxy-1 at —40 °C.

Scheme 1. Single Turnover Intramolecular Reaction of 1 with

Dioxygen Leading to oxy-1 at —60 °C, and Oxoferryl-cupric-tyrosyl
Radical Mimic Species 2 upon Warming at —40 °C.
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to triphenylphosphine oxide? Previous studies have shown that
such a reaction does not occur witly-1-like species?

The radical nature d is evidenced by EPR spectroscopy, which
we examined in light of the controversy about the EPR spectrum
of the R, intermediaté. Early studies performed on the enzyme
did not show any EPR-signal for the Cu(ll) in a&ype oxidized
enzyme? The unpaired electrons of the tyrosyl radic8l=f /)
and of Cy (I) (S= 1/,) are expected to be spin-coupled (with
possible delocalization of spin density onto the imidazole) resulting
in an overall silent EPR spectrum for the, fhtermediate. But

10.1021/ja0690969 CCC: $37.00 © 2007 American Chemical Society



COMMUNICATIONS

subsequent studies have reported an EPR-active intermediate wittfor a Lavoisier Fellowship. We are thankful to Dr Allis Chien
a Cu EPR signal that is distorted by the neighboring oxoferryl (SUMS), Dr Todd Eberspachet®Q, setup), Peng Cheng (UV),
paramagnet§ = 1).2°-¢i Another paper invoked a three-electron and Dr Takehiro Ohta for helpful discussions.

oxidized enzyme in a oxoferryl/cupriccRntermediate where the ) ] ) ]

phenol is not oxidized, although another study using iodide Supportlng Information Avallable:_ Further experimental data
labeling and protein peptide analysis suggested that a tyrosine!"¢luding procedures for the preparationiofoxy-1, and2, and also
radical was formed. Also, a R, intermediate generated artificially NM.R‘ MS, resonance R"?‘ma”' and BVis data." This material is
by treating the enzyme with hydrogen peroxide revealed partial available free of charge via the Internet at http://pubs.acs.org.
uncoupling for the CuB/Tyr244 system and the presence of a
tyrosine radical, but the Cu(ll) signal was not assigned tg.<Ct

In addition, upon photolysis of the oxidized enzyme, a radical signal (1) Ferguson-Miller, S.; Babcock, G. Them. Re. 1996 96, 2889.
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